Scattering invariants in Euler’s two-center problem

N. Martynchuk*, H.R. Dullin, K. Efstathiou, H. Waalkens

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

5 Citaten (Scopus)
333 Downloads (Pure)

Samenvatting

The problem of two fixed centers was introduced by Euler as early as in 1760. It plays an important role both in celestial mechanics and in the microscopic world. In the present paper we study the spatial problem in the case of arbitrary (both positive and negative) strengths of the centers. Combining techniques from scattering theory and Liouville integrability, we show that this spatial problem has topologically non-trivial scattering dynamics, which we identify as scattering monodromy. The approach that we introduce in this paper applies more generally to scattering systems that are integrable in the Liouville sense.
Originele taal-2English
Pagina's (van-tot)1296-1326
Aantal pagina's31
TijdschriftNonlinearity
Volume32
Nummer van het tijdschrift4
DOI's
StatusPublished - 2019

Vingerafdruk

Duik in de onderzoeksthema's van 'Scattering invariants in Euler’s two-center problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit