Samenvatting
Intra-tumor bacteria promote tumor growth and inactivate cancer-chemotherapeutics, causing poor treatment prognoses. Combined administration of cancer-chemotherapeutics and antibiotics may disturb the oral and intestinal microflora in critically-ill patients. To establish intra-tumor co-delivery of cancer-chemotherapeutics and antibiotics, gemcitabine and ciprofloxacin are loaded in so-called “self-targeting”, highly blood-compatible, synthetic DCPA-H2O liposomes equipped with complexed water for pH-responsiveness. Liposomal pH-responsiveness can be maintained by in-shell loading of gemcitabine and in-core loading of ciprofloxacin. These dual-loaded liposomes are stealthily transported in the blood circulation to accumulate in the acidic environment of an infected tumor. Upon tumor self-targeting, liposomes are fused with tumor cells and infecting bacteria and are disassembled to simultaneously release gemcitabine and ciprofloxacin. Treatment of mice with these self-targeting liposomes yields significantly higher responses of Escherichia coli infected tumors with respect to both infection and tumor volume than gemcitabine and ciprofloxacin co-delivered from non-self-targeting liposomes or free gemcitabine with or without ciprofloxacin in solution.
Originele taal-2 | English |
---|---|
Artikelnummer | 2215153 |
Aantal pagina's | 14 |
Tijdschrift | Advanced Functional Materials |
Volume | 33 |
Nummer van het tijdschrift | 32 |
Vroegere onlinedatum | apr.-2023 |
DOI's | |
Status | Published - 8-aug.-2023 |