Sex ratio selection and multi-factorial sex determination in the housefly: A dynamic model

OnderzoeksoutputAcademicpeer review

48 Citaten (Scopus)
287 Downloads (Pure)


Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.

Originele taal-2English
Pagina's (van-tot)879-888
Aantal pagina's10
TijdschriftJournal of Evolutionary Biology
Nummer van het tijdschrift3
StatusPublished - mei-2006

Citeer dit