Sharp estimation of local convergence radius for the Picard iteration

Stefan Maruster*, Laura Maruster

*Corresponding author voor dit werk

    OnderzoeksoutputAcademicpeer review

    235 Downloads (Pure)

    Samenvatting

    We investigate the local convergence radius of a general Picard iteration in the frame of a real Hilbert space. We propose a new algorithm to estimate the local convergence radius. Numerical experiments show that the proposed procedure gives sharp estimation (i.e., close to or even identical with the best one) for several well known or recent iterative methods and for various nonlinear mappings. Particularly, we applied the proposed algorithm for classical Newton method, for multi-step Newton method (in particular for third-order Potra-Ptak method) and for fifth-order "M5" method. We present also a new formula to estimate the local convergence radius for multi-step Newton method.

    Originele taal-2English
    Pagina's (van-tot)20-28
    TijdschriftJournal of Fixed Point Theory and Applications
    Volume20
    Nummer van het tijdschrift1
    DOI's
    StatusPublished - mrt.-2018

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Sharp estimation of local convergence radius for the Picard iteration'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit