TY - JOUR
T1 - Simultaneous mass spectrometric quantification of trace amines, their precursors and metabolites
AU - de Bruyn, Krisztina
AU - Diekman, Eugene F.
AU - van der Ley, Claude P.
AU - van Faassen, Martijn
AU - Kema, Ido P.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/5/1
Y1 - 2024/5/1
N2 - Objectives: Trace amines are powerful neuromodulators influencing the release and reuptake of catecholamines. These low concentrated endogenous amines impact mood, cognition, and hormone regulation. Dysregulation of trace amines have been associated with a variety of diseases, such as schizophrenia, Parkinson's disease, migraine, depression and more. Succesfull simultaneous quantification of trace amines, their precursors and metabolites would benefit both research and patient care. Since these compounds have various functional groups and are present in biological matrices with large concentration difference, their simultaneous quantification is an analytical challenge. Our goal was to develop a highly sensitive LC-MS/MS assay to simultaneously quantify trace amines, their precursors and metabolites in plasma.Methods: Our method is based on a simple two-step in-matrix derivatization protocol: propionic anhydride (PA) and 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide (EDC) in combination with 2,2,2-trifluoroethylamine (TFEA) followed by online solid phase extraction combined with LC-MS/MS. Fifteen metabolites can be measured simultaneously, three precursors, eight trace amines and four metabolites. Validation of this method was performed according to international validation guidelines. The pre-analytical stability of trace amines was assessed.Results: This novel method was successful in quantifying trace amines, their precursors, and metabolites in plasma. Using just 50 µl human plasma, we were able to accomplish limit of quantification for 2-phenylethylamine and N-methyl-phenylethylamine of 0.2 nmol/L and 0.1 nmol/L for tyramine and n-methyltyramine. Inter-and intra-assay imprecision was < 15 % for all analytes. Stability assessment showed susceptibility of certain trace amines e.g. 2-phenylethylamine and N-methyl-phenylethylamine to enzymatic degradation in plasma. The addition of the monoamine oxidase inhibitor pargyline to plasma prevented this enzymatic degradation.Conclusions: We developed a novel LC-MS/MS method that1) uses a new double derivatization technique, 2) is automated with online SPE, 3) uses far less sample volume then previous methods and 4) detects more components in the same sample (eight trace amines, three precursors, and four metabolites) with high specificity and selectivity. Furthermore, addition of MAO A/B inhibitor prevents degradation and guarantees more accurate quantification of trace amines.
AB - Objectives: Trace amines are powerful neuromodulators influencing the release and reuptake of catecholamines. These low concentrated endogenous amines impact mood, cognition, and hormone regulation. Dysregulation of trace amines have been associated with a variety of diseases, such as schizophrenia, Parkinson's disease, migraine, depression and more. Succesfull simultaneous quantification of trace amines, their precursors and metabolites would benefit both research and patient care. Since these compounds have various functional groups and are present in biological matrices with large concentration difference, their simultaneous quantification is an analytical challenge. Our goal was to develop a highly sensitive LC-MS/MS assay to simultaneously quantify trace amines, their precursors and metabolites in plasma.Methods: Our method is based on a simple two-step in-matrix derivatization protocol: propionic anhydride (PA) and 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide (EDC) in combination with 2,2,2-trifluoroethylamine (TFEA) followed by online solid phase extraction combined with LC-MS/MS. Fifteen metabolites can be measured simultaneously, three precursors, eight trace amines and four metabolites. Validation of this method was performed according to international validation guidelines. The pre-analytical stability of trace amines was assessed.Results: This novel method was successful in quantifying trace amines, their precursors, and metabolites in plasma. Using just 50 µl human plasma, we were able to accomplish limit of quantification for 2-phenylethylamine and N-methyl-phenylethylamine of 0.2 nmol/L and 0.1 nmol/L for tyramine and n-methyltyramine. Inter-and intra-assay imprecision was < 15 % for all analytes. Stability assessment showed susceptibility of certain trace amines e.g. 2-phenylethylamine and N-methyl-phenylethylamine to enzymatic degradation in plasma. The addition of the monoamine oxidase inhibitor pargyline to plasma prevented this enzymatic degradation.Conclusions: We developed a novel LC-MS/MS method that1) uses a new double derivatization technique, 2) is automated with online SPE, 3) uses far less sample volume then previous methods and 4) detects more components in the same sample (eight trace amines, three precursors, and four metabolites) with high specificity and selectivity. Furthermore, addition of MAO A/B inhibitor prevents degradation and guarantees more accurate quantification of trace amines.
KW - Derivatization
KW - Monoamine oxidase inhibitor
KW - Online solid phase extraction
KW - Quantification
KW - Schizophrenia
KW - Trace amine
UR - http://www.scopus.com/inward/record.url?scp=85189747333&partnerID=8YFLogxK
U2 - 10.1016/j.jchromb.2024.124098
DO - 10.1016/j.jchromb.2024.124098
M3 - Article
AN - SCOPUS:85189747333
SN - 1570-0232
VL - 1238
JO - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
JF - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
M1 - 124098
ER -