Singular bifurcations in a slow-fast modified Leslie-Gower model

Roberto Albarran-García, Martha Alvarez-Ramírez, Hildeberto Jardón-Kojakhmetov*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

1 Downloads (Pure)

Samenvatting

We study a predator–prey system with a generalist Leslie–Gower predator, a functional Holling type II response, and a weak Allee effect on the prey. The prey's population often grows much faster than its predator, allowing us to introduce a small time scale parameter ɛ that relates the growth rates of both species, giving rise to a slow-fast system. Zhu and Liu (2022) show that, in the case of the weak Allee effect, Hopf singular bifurcation, slow-fast canard cycles, relaxation oscillations, etc. Our main contribution lies in the rigorous analysis of a degenerate scenario organized by a (degenerate) transcritical bifurcation. The key tool employed is the blow-up method that desingularizes the degenerate singularity. In addition, we determine the criticality of the singular Hopf bifurcation using recent intrinsic techniques that do not require a local normal form. The theoretical analysis is complemented by a numerical bifurcation analysis, in which we numerically identify and analytically confirm the existence of a nearby Takens–Bogdanov point.

Originele taal-2English
Artikelnummer100558
Aantal pagina's29
TijdschriftResults in Applied Mathematics
Volume26
DOI's
StatusPublished - mei-2025

Vingerafdruk

Duik in de onderzoeksthema's van 'Singular bifurcations in a slow-fast modified Leslie-Gower model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit