Skeleton-based Scagnostics

Jose Matute*, Alexandru C. Telea, Lars Linsen

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

21 Citaten (Scopus)
205 Downloads (Pure)

Samenvatting

Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based similarity and computation time efficiency.

Originele taal-2English
Pagina's (van-tot)542-552
Aantal pagina's11
TijdschriftIEEE Transactions on Visualization and Computer Graphics
Volume24
Nummer van het tijdschrift1
DOI's
StatusPublished - jan.-2018
EvenementIEEE VIS Conference - Phoenix, United States
Duur: 1-okt.-20176-okt.-2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Skeleton-based Scagnostics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit