TY - JOUR
T1 - Spatial planning based on urban energy harvesting toward productive urban regions
AU - Leduc, Wouter R. W. A.
AU - Van Kann, Ferry M. G.
PY - 2013/1
Y1 - 2013/1
N2 - The industrial revolution and the exploitation of fossil fuels fostered profound changes on transportation systems and infrastructure enabling unprecedented urban growth. Urban regions, which now host the majority of the world's population, resemble a linear metabolism: importing most of their raw materials, food, and energy, and using these resources in an inefficient manner resulting in waste outflows. Regarding energy flows, cities are highly depending on fossil fuels and the rate at which fossil fuels are consumed is faster than their generation rate. Therefore, a shift is needed toward more sustainable energy sources. We propose a sustainable urban energy planning approach, based on the thermodynamic principle, exergy. This approach integrates multi-functionality, interaction between urban functions, and harvesting of local renewable and residual resources Urban Harvest Approach. Synergies between urban functions are crucial to reach productive and sustainable urban regions. Resource exchange among different urban functions offers possibilities toward productive urban regions aiming for closed cycle resources management, e.g. integrating industrial ecosystems in urban ecosystems. Our method consists of six steps: (i) land-use inventory; (ii) energy demand inventory; (iii) local renewable/residual energy potential analysis; (iv) clusters of spatial functions exploration; (v) energetic linkages analysis; (vi) network patterns exploration. We tested the method at neighborhood scale, Kerkrade-West, The Netherlands. Results showed that linking spatial clusters is crucial toward circular urban metabolism. Spatial design should promote mixed land-use. The case showed that spatial planning based on urban energy harvesting is a useful method to translate generic goals to local spatial interventions. Urban energy harvesting can contribute to increased productivity, resulting in increased sustainability of urban areas, e.g. social, environmental benefits. (C) 2012 Elsevier Ltd. All rights reserved.
AB - The industrial revolution and the exploitation of fossil fuels fostered profound changes on transportation systems and infrastructure enabling unprecedented urban growth. Urban regions, which now host the majority of the world's population, resemble a linear metabolism: importing most of their raw materials, food, and energy, and using these resources in an inefficient manner resulting in waste outflows. Regarding energy flows, cities are highly depending on fossil fuels and the rate at which fossil fuels are consumed is faster than their generation rate. Therefore, a shift is needed toward more sustainable energy sources. We propose a sustainable urban energy planning approach, based on the thermodynamic principle, exergy. This approach integrates multi-functionality, interaction between urban functions, and harvesting of local renewable and residual resources Urban Harvest Approach. Synergies between urban functions are crucial to reach productive and sustainable urban regions. Resource exchange among different urban functions offers possibilities toward productive urban regions aiming for closed cycle resources management, e.g. integrating industrial ecosystems in urban ecosystems. Our method consists of six steps: (i) land-use inventory; (ii) energy demand inventory; (iii) local renewable/residual energy potential analysis; (iv) clusters of spatial functions exploration; (v) energetic linkages analysis; (vi) network patterns exploration. We tested the method at neighborhood scale, Kerkrade-West, The Netherlands. Results showed that linking spatial clusters is crucial toward circular urban metabolism. Spatial design should promote mixed land-use. The case showed that spatial planning based on urban energy harvesting is a useful method to translate generic goals to local spatial interventions. Urban energy harvesting can contribute to increased productivity, resulting in increased sustainability of urban areas, e.g. social, environmental benefits. (C) 2012 Elsevier Ltd. All rights reserved.
KW - Urban harvest approach
KW - Urban planning
KW - Renewable energy
KW - Urban metabolism
KW - Urban exergy
KW - Resource management
KW - INDUSTRIAL ECOLOGY
KW - SUSTAINABLE DEVELOPMENT
KW - MANAGEMENT
KW - RESOURCES
KW - PRINCIPLES
KW - SYSTEMS
KW - EXERGY
KW - CITIES
KW - DESIGN
KW - MODEL
U2 - 10.1016/j.jclepro.2012.09.014
DO - 10.1016/j.jclepro.2012.09.014
M3 - Article
VL - 39
SP - 180
EP - 190
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
SN - 0959-6526
ER -