Spatio-temporal model for multiple ChIP-seq experiments

Saverio Ranciati, Cinzia Viroli, Ernst Wit

Onderzoeksoutput: ArticleAcademicpeer review

1 Citaat (Scopus)
41 Downloads (Pure)

Samenvatting

The increasing availability of ChIP-seq data demands for advanced statistical tools to analyze the results of such experiments. The inherent features of high-throughput sequencing output call for a modelling framework that can account for the spatial dependency between neighboring regions of the genome and the temporal dimension that arises from observing the protein binding process at progressing time points; also, multiple biological/technical replicates of the experiment are usually produced and methods to jointly account for them are needed. Furthermore, the antibodies used in the experiment lead to potentially different immunoprecipitation efficiencies, which can affect the capability of distinguishing between the true signal in the data and the background noise. The statistical procedure proposed consist of a discrete mixture model with an underlying latent Markov random field: the novelty of the model is to allow both spatial and temporal dependency to play a role in determining the latent state of genomic regions involved in the protein binding process, while combining all the information of the replicates available instead of treating them separately. It is also possible to take into account the different antibodies used, in order to obtain better insights of the process and exploit all the biological information available.
Originele taal-2English
Pagina's (van-tot)211-219
Aantal pagina's9
TijdschriftStatistical applications in genetics and molecular biology
Volume14
Nummer van het tijdschrift2
DOI's
StatusPublished - 1-apr.-2015

Vingerafdruk

Duik in de onderzoeksthema's van 'Spatio-temporal model for multiple ChIP-seq experiments'. Samen vormen ze een unieke vingerafdruk.

Citeer dit