Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds

U. Boscain, D. Prandi, M. Seri*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

18 Citaten (Scopus)
65 Downloads (Pure)

Samenvatting

We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term ElogE. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalized Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.

Originele taal-2English
Pagina's (van-tot)32-50
Aantal pagina's19
TijdschriftCommunications in partial differential equations
Volume41
Nummer van het tijdschrift1
DOI's
StatusPublished - 2-jan.-2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds'. Samen vormen ze een unieke vingerafdruk.

Citeer dit