Spin relaxation in graphene with self-assembled cobalt porphyrin molecules

S. Omar*, M. Gurram, I. J. Vera-Marun, X. Zhang, E. H. Huisman, A. Kaverzin, B. L. Feringa, B. J. van Wees

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

6 Citaten (Scopus)
3 Downloads (Pure)


In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time tau(s) even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.

Originele taal-2English
Aantal pagina's6
TijdschriftPhysical Review. B: Condensed Matter and Materials Physics
Nummer van het tijdschrift11
StatusPublished - 25-sep.-2015

Citeer dit