Samenvatting
In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time tau(s) even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.
Originele taal-2 | English |
---|---|
Artikelnummer | 115442 |
Aantal pagina's | 6 |
Tijdschrift | Physical Review. B: Condensed Matter and Materials Physics |
Volume | 92 |
Nummer van het tijdschrift | 11 |
DOI's | |
Status | Published - 25-sep.-2015 |