TY - JOUR
T1 - Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats
AU - Waanders, Femke
AU - Rienstra, Heleen
AU - Boer, Mark Walther
AU - Zandvoort, Andre
AU - Rozing, Jan
AU - Navis, Gerjan
AU - van Goor, Harry
AU - Hillebrands, Jan-Luuk
N1 - Article
PY - 2009/5
Y1 - 2009/5
N2 - Waanders F, Rienstra H, Walther Boer M, Zandvoort A, Rozing J, Navis G, van Goor H, Hillebrands JL. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol 296: F1072-F1079, 2009. First published February 25, 2009; doi:10.1152/ajprenal.90643.2008.-Chronic transplant dysfunction (CTD) is the leading cause of long-term renal allograft loss and is characterized by specific histological lesions including transplant vasculopathy, interstitial fibrosis, and focal glomerulosclerosis. Increasing evidence indicates that aldosterone is a direct mediator of renal damage via the mineralocorticoid receptor (MR). The MR antagonist spironolactone is renoprotective in native chronic kidney disease, but its effects on CTD are unknown. We studied the effects of spironolactone treatment on CTD development in the Dark Agouti-to-Wistar-Furth renal allograft transplant model, by treatment with 20 mg/kg spironolactone or vehicle daily by oral gavage from 2 days before transplantation (donors and recipients) throughout the experiment (12 wk, recipients). Dark Agouti-to-Dark Agouti isografts served as negative controls. Spironolactone significantly ameliorated the development of transplant vasculopathy in allografts by reducing the number of affected intrarenal arteries. In addition, spironolactone treatment showed a trend toward reduced proteinuria and focal glomerulosclerosis, and significantly reduced glomerular macrophage influx. However, spironolactone treatment did not affect interstitial fibrosis, interstitial macrophage influx, creatinine clearance, and systolic blood pressure. We conclude that spironolactone selectively ameliorates transplant vasculopathy and glomerular lesions in renal CTD in rats. These results suggest that spironolactone may have renoprotective potential as an adjunct treatment in renal transplantation to ameliorate CTD.
AB - Waanders F, Rienstra H, Walther Boer M, Zandvoort A, Rozing J, Navis G, van Goor H, Hillebrands JL. Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. Am J Physiol Renal Physiol 296: F1072-F1079, 2009. First published February 25, 2009; doi:10.1152/ajprenal.90643.2008.-Chronic transplant dysfunction (CTD) is the leading cause of long-term renal allograft loss and is characterized by specific histological lesions including transplant vasculopathy, interstitial fibrosis, and focal glomerulosclerosis. Increasing evidence indicates that aldosterone is a direct mediator of renal damage via the mineralocorticoid receptor (MR). The MR antagonist spironolactone is renoprotective in native chronic kidney disease, but its effects on CTD are unknown. We studied the effects of spironolactone treatment on CTD development in the Dark Agouti-to-Wistar-Furth renal allograft transplant model, by treatment with 20 mg/kg spironolactone or vehicle daily by oral gavage from 2 days before transplantation (donors and recipients) throughout the experiment (12 wk, recipients). Dark Agouti-to-Dark Agouti isografts served as negative controls. Spironolactone significantly ameliorated the development of transplant vasculopathy in allografts by reducing the number of affected intrarenal arteries. In addition, spironolactone treatment showed a trend toward reduced proteinuria and focal glomerulosclerosis, and significantly reduced glomerular macrophage influx. However, spironolactone treatment did not affect interstitial fibrosis, interstitial macrophage influx, creatinine clearance, and systolic blood pressure. We conclude that spironolactone selectively ameliorates transplant vasculopathy and glomerular lesions in renal CTD in rats. These results suggest that spironolactone may have renoprotective potential as an adjunct treatment in renal transplantation to ameliorate CTD.
KW - kidney transplantation
KW - proteinuria
KW - aldosterone
KW - CHRONIC ALLOGRAFT NEPHROPATHY
KW - CHRONIC CYCLOSPORINE NEPHROTOXICITY
KW - PRONE HYPERTENSIVE-RATS
KW - DIABETIC-RATS
KW - KIDNEY-TRANSPLANTATION
KW - ENDOTHELIAL-CELLS
KW - RECEPTOR BLOCKADE
KW - VASCULAR INJURY
KW - HEART-FAILURE
KW - ALDOSTERONE
U2 - 10.1152/ajprenal.90643.2008
DO - 10.1152/ajprenal.90643.2008
M3 - Article
SN - 1931-857X
VL - 296
SP - F1072-F1079
JO - American journal of physiology-Renal physiology
JF - American journal of physiology-Renal physiology
IS - 5
ER -