TY - JOUR
T1 - SUMO-specific proteases
T2 - SENPs in oxidative stress-related signaling and diseases
AU - Jiao, Yaqi
AU - Zhang, Xiaojuan
AU - Yang, Zhenshan
N1 - Publisher Copyright:
© 2024 International Union of Biochemistry and Molecular Biology.
PY - 2024/9
Y1 - 2024/9
N2 - Oxidative stress is employed to depict a series of responses detrimental to normal cellular functions resulting from an imbalance between intracellular oxidants, mainly reactive oxygen species and antioxidant defenses. Oxidative stress often contributes to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. In this process, the relationship between small ubiquitin-like modifier (SUMO) and oxidative stress has garnered significant attention, with its posttranslational modification (PTM) frequently serving as a marker of oxidative stress status. Sentrin/SUMO-specific proteases (SENPs), affected by alternative splicing, PTMs such as phosphorylation and ubiquitination, and various protein interactions, are crucial molecules in the SUMO process. The human SENP family has six members (SENP1–3, SENP5–7), which are classified into two categories based on sequence similarity, substrate specificity, and subcellular location. They have two core functions in the human body: first, by cleaving the precursor SUMO and exposing the C-terminal glycine, they initiate the SUMO process; second, they can specifically recognize and dissociate SUMO proteins bound to substrates, a process known as deSUMOylation. However, the connection between deSUMOylation and oxidative stress remains a relatively unexplored area despite their strong association with oxidative diseases such as cancer and cardiovascular disease. This article aims to illustrate the significant contribution of SENPs to the oxidative stress pathway through deSUMOylation by reviewing their structure and classification, their roles in oxidative stress, and the changes in their expression and activity in several typical oxidative stress-related diseases.
AB - Oxidative stress is employed to depict a series of responses detrimental to normal cellular functions resulting from an imbalance between intracellular oxidants, mainly reactive oxygen species and antioxidant defenses. Oxidative stress often contributes to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. In this process, the relationship between small ubiquitin-like modifier (SUMO) and oxidative stress has garnered significant attention, with its posttranslational modification (PTM) frequently serving as a marker of oxidative stress status. Sentrin/SUMO-specific proteases (SENPs), affected by alternative splicing, PTMs such as phosphorylation and ubiquitination, and various protein interactions, are crucial molecules in the SUMO process. The human SENP family has six members (SENP1–3, SENP5–7), which are classified into two categories based on sequence similarity, substrate specificity, and subcellular location. They have two core functions in the human body: first, by cleaving the precursor SUMO and exposing the C-terminal glycine, they initiate the SUMO process; second, they can specifically recognize and dissociate SUMO proteins bound to substrates, a process known as deSUMOylation. However, the connection between deSUMOylation and oxidative stress remains a relatively unexplored area despite their strong association with oxidative diseases such as cancer and cardiovascular disease. This article aims to illustrate the significant contribution of SENPs to the oxidative stress pathway through deSUMOylation by reviewing their structure and classification, their roles in oxidative stress, and the changes in their expression and activity in several typical oxidative stress-related diseases.
KW - cancer
KW - oxidative stress
KW - ROS
KW - SENP
KW - SUMO
UR - http://www.scopus.com/inward/record.url?scp=85189613903&partnerID=8YFLogxK
U2 - 10.1002/biof.2055
DO - 10.1002/biof.2055
M3 - Review article
C2 - 38551331
AN - SCOPUS:85189613903
SN - 0951-6433
VL - 50
JO - Biofactors
JF - Biofactors
IS - 5
M1 - biof.2055
ER -