18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

Jakoba J. Eertink, Tim van de Brug, Sanne E. Wiegers, Gerben J. C. Zwezerijnen, Elisabeth A. G. Pfaehler, Pieternella J. Lugtenburg, Bronno van der Holt, Henrica C. W. de Vet, Otto S. Hoekstra, Ronald Boellaard, Josee M. Zijlstra*

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    83 Citaten (Scopus)
    118 Downloads (Pure)

    Samenvatting

    Purpose: Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. Methods: Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. Results: The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUV peak and the maximal distance between the largest lesion and any other lesion (Dmax bulk, AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUV peak and Dmax bulk) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). Conclusion: Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. Trial registration number and date: EudraCT: 2006–005,174-42, 01–08-2008.

    Originele taal-2English
    Pagina's (van-tot)932-942
    Aantal pagina's11
    TijdschriftEuropean Journal of Nuclear Medicine and Molecular Imaging
    Volume49
    Nummer van het tijdschrift3
    Vroegere onlinedatum18-aug.-2021
    DOI's
    StatusPublished - feb.-2022

    Vingerafdruk

    Duik in de onderzoeksthema's van '18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit