SynthRAD2023 Grand Challenge dataset: Generating synthetic CT for radiotherapy

Adrian Thummerer, Erik van der Bijl, Arthur Galapon, Joost J.C. Verhoeff, Johannes A. Langendijk, Stefan Both, Cornelis (Nico) A.T. van den Berg, Matteo Maspero*

*Corresponding author voor dit werk

    OnderzoeksoutputAcademicpeer review

    30 Citaten (Scopus)
    132 Downloads (Pure)

    Samenvatting

    Purpose: Medical imaging has become increasingly important in diagnosing and treating oncological patients, particularly in radiotherapy. Recent advances in synthetic computed tomography (sCT) generation have increased interest in public challenges to provide data and evaluation metrics for comparing different approaches openly. This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered cone-beam CT (CBCT) and magnetic resonance imaging (MRI) images to facilitate the development and evaluation of sCT generation for radiotherapy planning.

    Acquisition and Validation Methods: The dataset consists of CT, CBCT, and MRI of 540 brains and 540 pelvic radiotherapy patients from three Dutch university medical centers. Subjects' ages ranged from 3 to 93 years, with a mean age of 60. Various scanner models and acquisition settings were used across patients from the three data-providing centers. Details are available in a comma separated value files provided with the datasets.

    Data Format and Usage Notes: The data is available on Zenodo (https://doi.org/10.5281/zenodo.7260704, https://doi.org/10.5281/zenodo.7868168) under the SynthRAD2023 collection. The images for each subject are available in nifti format.

    Potential Applications: This dataset will enable the evaluation and development of image synthesis algorithms for radiotherapy purposes on a realistic multi-center dataset with varying acquisition protocols. Synthetic CT generation has numerous applications in radiation therapy, including diagnosis, treatment planning, treatment monitoring, and surgical planning.

    Originele taal-2English
    Pagina's (van-tot)4664-4674
    Aantal pagina's11
    TijdschriftMedical Physics
    Volume50
    Nummer van het tijdschrift7
    DOI's
    StatusPublished - jul.-2023

    Vingerafdruk

    Duik in de onderzoeksthema's van 'SynthRAD2023 Grand Challenge dataset: Generating synthetic CT for radiotherapy'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit