The Case for Polymorphic Registers in Dataflow Computing

Catalin Bogdan Ciobanu*, Georgi Gaydadjiev, Christian Pilato, Donatella Sciuto

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
145 Downloads (Pure)

Samenvatting

Heterogeneous systems are becoming increasingly popular, delivering high performance through hardware specialization. However, sequential data accesses may have a negative impact on performance. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications by facilitating high-speed, parallel access to performance-critical data. This article shows how PRFs can be integrated into dataflow computational platforms. Our semi-automatic, compiler-based methodology generates customized PRFs and modifies the computational kernels to efficiently exploit them. We use a separable 2D convolution case study to evaluate the impact of memory latency and bandwidth on performance compared to a state-of-the-art NVIDIA Tesla C2050GPU. We improve the throughput upto 56.17X and show that the PRF-augmented system outperforms the GPU for for 9 x 9 or larger mask sizes, even in bandwidth-constrained systems.

Originele taal-2English
Pagina's (van-tot)1185-1219
Aantal pagina's35
TijdschriftInternational journal of parallel programming
Volume46
Nummer van het tijdschrift6
DOI's
StatusPublished - dec.-2018
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'The Case for Polymorphic Registers in Dataflow Computing'. Samen vormen ze een unieke vingerafdruk.

Citeer dit