TY - JOUR
T1 - The H i absorption zoo
T2 - JVLA extension to z ∼ 0.4
AU - Murthy, Suma
AU - Morganti, Raffaella
AU - Oosterloo, Tom
AU - MacCagni, Filippo M.
N1 - Funding Information:
Acknowledgements. We are grateful to the referee for a thorough read of the manuscript and the useful comments. Part of the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant RADIOLIFE-320745. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We used the Astrogeo VLBI FITS image database publicly available at http://astrogeo.org/vlbi_images. We have made use of the “K-corrections calculator” service available at http: //kcor.sai.msu.ru/. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington.
Publisher Copyright:
© 2021 ESO.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - We present an H I 21 cm absorption study of a sample of 26 radio-loud active galactic nuclei (AGN) at 0.25 < z < 0.4 carried out with the Karl G. Jansky Very Large Array. Our aim was to study the rate of incidence of H I in different classes of radio AGN, the morphology and kinematics of the detected H I, and the nature of the interaction between the H I and the radio source at these redshifts. Our sample consists of 14 sources with sizes of up to tens of kpc and 12 compact sources (< a few kpc) in the radio-power range 1025.7 W Hz-1-1026.5 W Hz-1. We detect H I in five sources, corresponding to a detection rate of ∼19%. Within the error bars, this agrees with the detection rate found at lower redshifts. We find that the rest-frame UV luminosities of most of the sources in the sample, including all the detections, are below the proposed threshold above which the H I is supposed to have been ionised. An analysis of the optical emission-line spectra of the sources shows that despite their high radio powers, about one-third of the sample, including two detections, are low-ionisation sources. The radio continuum emission from the sources detected in H I is unresolved at ∼5 to 10 kpc scales in our observations, but shows extended structure on parsec scales. We analysed the H I 21 cm absorption spectra of the detections to understand the morphology and kinematics of H I. The absorption profiles are mostly complex with widths between the nulls ranging from ∼60 km s-1 to 700 km s-1. These detections also exhibit remarkably high H I column densities in the range ∼1021 cm-2-1022 cm-2 for Tspin = 100 K and unit covering factor. Our modelling of the H I 21 cm absorption profiles suggests that in two sources the gas appears to be disturbed, and in three cases, including one with disturbed H I, the majority of the absorption is consistent with it arising from an H I disc. Despite the high radio power of our sources, we do not detect fast outflows. However, the optical emission lines in these detections show the presence of significantly disturbed gas in the nuclear regions in the form of very wide and highly blueshifted emission-line components. Since some of our detections are also low-ionisation AGN, it is quite possible that this disturbance is caused by the radio jets. Overall, our findings point towards a continuation of the low-z trends in the H I detection rate and the incidence of H I in radio AGN up to z ∼ 0.4.
AB - We present an H I 21 cm absorption study of a sample of 26 radio-loud active galactic nuclei (AGN) at 0.25 < z < 0.4 carried out with the Karl G. Jansky Very Large Array. Our aim was to study the rate of incidence of H I in different classes of radio AGN, the morphology and kinematics of the detected H I, and the nature of the interaction between the H I and the radio source at these redshifts. Our sample consists of 14 sources with sizes of up to tens of kpc and 12 compact sources (< a few kpc) in the radio-power range 1025.7 W Hz-1-1026.5 W Hz-1. We detect H I in five sources, corresponding to a detection rate of ∼19%. Within the error bars, this agrees with the detection rate found at lower redshifts. We find that the rest-frame UV luminosities of most of the sources in the sample, including all the detections, are below the proposed threshold above which the H I is supposed to have been ionised. An analysis of the optical emission-line spectra of the sources shows that despite their high radio powers, about one-third of the sample, including two detections, are low-ionisation sources. The radio continuum emission from the sources detected in H I is unresolved at ∼5 to 10 kpc scales in our observations, but shows extended structure on parsec scales. We analysed the H I 21 cm absorption spectra of the detections to understand the morphology and kinematics of H I. The absorption profiles are mostly complex with widths between the nulls ranging from ∼60 km s-1 to 700 km s-1. These detections also exhibit remarkably high H I column densities in the range ∼1021 cm-2-1022 cm-2 for Tspin = 100 K and unit covering factor. Our modelling of the H I 21 cm absorption profiles suggests that in two sources the gas appears to be disturbed, and in three cases, including one with disturbed H I, the majority of the absorption is consistent with it arising from an H I disc. Despite the high radio power of our sources, we do not detect fast outflows. However, the optical emission lines in these detections show the presence of significantly disturbed gas in the nuclear regions in the form of very wide and highly blueshifted emission-line components. Since some of our detections are also low-ionisation AGN, it is quite possible that this disturbance is caused by the radio jets. Overall, our findings point towards a continuation of the low-z trends in the H I detection rate and the incidence of H I in radio AGN up to z ∼ 0.4.
KW - Galaxies: active
KW - Galaxies: ISM
KW - Radio lines: galaxies
UR - http://www.scopus.com/inward/record.url?scp=85117816793&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202141566
DO - 10.1051/0004-6361/202141566
M3 - Article
AN - SCOPUS:85117816793
VL - 654
JO - Astronomy & astrophysics
JF - Astronomy & astrophysics
SN - 0004-6361
M1 - A94
ER -