The Influence of Strain on the Rotation of an Artificial Molecular Motor

Michael Kathan*, Stefano Crespi, Axel Troncossi, Charlotte N. Stindt, Ryojun Toyoda, Ben L. Feringa*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)
5 Downloads (Pure)

Samenvatting

In artificial small-molecule machines, molecular motors can be used to perform work on coupled systems by applying a mechanical load—such as strain—that allows for energy transduction. Here, we report how ring strain influences the rotation of a rotary molecular motor. Bridging the two halves of the motor with alkyl tethers of varying sizes yields macrocycles that constrain the motor's movement. Increasing the ring size by two methylene increments increases the mobility of the motor stepwise and allows for fine-tuning of strain in the system. Small macrocycles (8–14 methylene units) only undergo a photochemical E/Z isomerization. Larger macrocycles (16–22 methylene units) can perform a full rotational cycle, but thermal helix inversion is strongly dependent on the ring size. This study provides systematic and quantitative insight into the behavior of molecular motors under a mechanical load, paving the way for the development of complex coupled nanomachinery.

Originele taal-2English
Artikelnummere202205801
Aantal pagina's9
TijdschriftAngewandte Chemie - International Edition
Volume61
Nummer van het tijdschrift34
Vroegere onlinedatum19-jun.-2022
DOI's
StatusPublished - 22-aug.-2022

Citeer dit