Samenvatting
To investigate the consequences of oxidative stress and hypoxia on EPAC-1 expression during retinopathy.
Oxygen-induced retinopathy was induced in mice and EPAC-1 expression investigated by immunofluorescence. In silico analyses were used to identify a link between EPAC-1 expression and microRNA-7-5p in endothelial cells and confirmed by western blot analyses on cells expressing microRNA-7-5p. In vitro, endothelial cells were either incubated at 2% oxygen or transfected with microRNA-7-5p, and the effects of these treatments on EPAC-1 expression, endothelial hyperpermeability and NO production were assessed. In the Ins2Akita mouse model, levels of EPAC-1 expression as well as microRNA-7-5p were assessed by qPCR. Endothelial nitric oxide synthase was assessed by immunoblotting in the Ins2Akita model.
Hypoxia induces the expression of microRNA-7-5p that translationally inhibits the expression of EPAC-1 in endothelial cells, resulting in hyperpermeability and the loss of eNOS activity. Activation of EPAC-1 by the cAMP analogue 8-pCPT-2'-O-Me-cAMP reduced the sensitivity of EPAC-1 to oxidative stress and restored the endothelial permeability to baseline levels. Additionally, 8-pCPT-2'-O-Me-cAMP rescued eNOS activity and NO production. In mouse models of retinopathy, i.e., oxygen-induced retinopathy and the spontaneous diabetic heterozygous Ins2(Akita) mice, EPAC-1 levels are decreased which is associated with an increase in microRNA-7-5p expression and reduced eNOS activity.
In retinopathy, EPAC-1 expression is decreased in a microRNA-7-mediated manner, contributing to endothelial dysfunction. Pharmacological activation of remnant EPAC-1 rescues endothelial function. Collectively, these data indicate that EPAC-1 resembles an efficacious and druggable target molecule for the amelioration of (diabetic) retinopathy.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 581-591 |
Aantal pagina's | 11 |
Tijdschrift | Acta diabetologica |
Volume | 54 |
Nummer van het tijdschrift | 6 |
DOI's | |
Status | Published - jun.-2017 |