TY - JOUR
T1 - The Novel Compound SUL-138 Counteracts Endothelial Cell and Kidney Dysfunction in Sepsis by Preserving Mitochondrial Function
AU - Star, Bastiaan S.
AU - van der Slikke, Elisabeth C.
AU - van Buiten, Azuwerus
AU - Henning, Robert H.
AU - Bouma, Hjalmar R.
N1 - Funding Information:
The current work was financially supported by a Mandema stipend from the UMCG and a Kolff grant (16OKG06) from the Dutch Kidney Foundation awarded to H.R.B., and by two MD/PhD program grants from the UMCG awarded to B.S.S. and E.C.v.d.S.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/3/28
Y1 - 2023/3/28
N2 - Sepsis is defined as a dysregulated host response leading to organ dysfunction, which may ultimately result in the patient’s death. Mitochondrial dysfunction plays a key role in developing organ dysfunction in sepsis. In this study, we explored the efficacy of the novel mitochondrial protective compound, SUL-138, in sepsis models in HUVECs and mice. In LPS-challenged HUVECs, SUL-138 preserved mitochondrial membrane potential and oxygen consumption and limited mitochondrial oxidative stress, resulting in increased survival at 48 h. Further, SUL-138 dampened the LPS-induced expression of IL-1β, but not of NLRP3, and IL-18 in HUVECs. Sepsis in mice induced by cecal ligation and puncture (CLP) led to a lower mitochondrial membrane potential and increased levels of mitochondrial oxidative stress in the kidney, which SUL-138 limited. In addition, SUL-138 mitigated the CLP-induced increase in kidney dysfunction markers NGAL and urea. It dampened the rise in kidney expression of IL-6, IL-1β, and ICAM-1, but not TNF-α and E-selectin. Yet, SUL-138 limited the increase in plasma levels of IL-6 and TNF-α of CLP mice. These results demonstrate that SUL-138 supports mitochondrial function, resulting in a limitation of systemic inflammation and preservation of kidney function.
AB - Sepsis is defined as a dysregulated host response leading to organ dysfunction, which may ultimately result in the patient’s death. Mitochondrial dysfunction plays a key role in developing organ dysfunction in sepsis. In this study, we explored the efficacy of the novel mitochondrial protective compound, SUL-138, in sepsis models in HUVECs and mice. In LPS-challenged HUVECs, SUL-138 preserved mitochondrial membrane potential and oxygen consumption and limited mitochondrial oxidative stress, resulting in increased survival at 48 h. Further, SUL-138 dampened the LPS-induced expression of IL-1β, but not of NLRP3, and IL-18 in HUVECs. Sepsis in mice induced by cecal ligation and puncture (CLP) led to a lower mitochondrial membrane potential and increased levels of mitochondrial oxidative stress in the kidney, which SUL-138 limited. In addition, SUL-138 mitigated the CLP-induced increase in kidney dysfunction markers NGAL and urea. It dampened the rise in kidney expression of IL-6, IL-1β, and ICAM-1, but not TNF-α and E-selectin. Yet, SUL-138 limited the increase in plasma levels of IL-6 and TNF-α of CLP mice. These results demonstrate that SUL-138 supports mitochondrial function, resulting in a limitation of systemic inflammation and preservation of kidney function.
KW - AKI
KW - endothelial cells
KW - metabolism
KW - mitochondria
KW - oxidative stress
KW - sepsis
KW - SUL-138
U2 - 10.3390/ijms24076330
DO - 10.3390/ijms24076330
M3 - Article
C2 - 37047303
AN - SCOPUS:85152337857
SN - 1661-6596
VL - 24
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 7
M1 - 6330
ER -