The problem of two fixed centers: Bifurcation diagram for positive energies

Marcello Seri*

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

9 Citaten (Scopus)
360 Downloads (Pure)

Samenvatting

We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map. (C) 2015 AIP Publishing LLC.

Originele taal-2English
Artikelnummer012902
Aantal pagina's14
TijdschriftJournal of Mathematical Physics
Volume56
Nummer van het tijdschrift1
DOI's
StatusPublished - jan.-2015

Vingerafdruk

Duik in de onderzoeksthema's van 'The problem of two fixed centers: Bifurcation diagram for positive energies'. Samen vormen ze een unieke vingerafdruk.

Citeer dit