The rigid orthogonal Procrustes rotation problem

JMF Ten Berge*

*Corresponding author voor dit werk

    OnderzoeksoutputAcademicpeer review

    12 Citaten (Scopus)

    Samenvatting

    The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has proposed a method for suppressing reflections in cases where that is necessary. This paper proves that Gower's solution does indeed give the best least squares fit over rigid rotation when the unconstrained solution is not rigid. Also, special cases that have multiple solutions are discussed.

    Originele taal-2English
    Pagina's (van-tot)201-205
    Aantal pagina's5
    TijdschriftPsychometrika
    Volume71
    Nummer van het tijdschrift1
    DOI's
    StatusPublished - mrt.-2006

    Vingerafdruk

    Duik in de onderzoeksthema's van 'The rigid orthogonal Procrustes rotation problem'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit