The Roco protein family: a functional perspective

Ignacio Marin*, Wouter N. van Egmond, Peter J. M. van Haastert

*Corresponding author voor dit werk

Onderzoeksoutputpeer review

105 Citaten (Scopus)
511 Downloads (Pure)

Samenvatting

In this review, we discuss the evolutionary, biochemical, and functional data available for members of the Roco protein family. They are characterized by having a conserved supradomain that contains a Ras-like GTPase domain, called Roc, and a characteristic COR (C-terminal of Roc) domain. A kinase domain and diverse regulatory and protein protein interaction domains are also often found in Roco proteins. First detected in the slime mold Dictyostelium discoideum, they have a broad phylogenetic range, being present in both prokaryotes and eukaryotes. The functions of these proteins are diverse. The best understood are Dictyostelium Rocos, which are involved in cell division, chemotaxis, and development. However, this family has received extensive attention because mutations in one of the human Roco genes (LRRK2) cause familial Parkinson disease. Other human Rocos are involved in epilepsy and cancer. Biochemical data suggest that Roc domains are capable of activating kinase domains intramolecularly. Interestingly, some of the dominant, disease-causing mutations in both the GTPase and kinase domains of LRRK2 increase kinase activity. Thus, Roco proteins may act as stand-alone transduction units, performing roles that were thought so far to require multiple proteins, as occur in the Ras transduction pathway.

Originele taal-2English
Pagina's (van-tot)3103-3110
Aantal pagina's8
TijdschriftThe FASEB Journal
Volume22
Nummer van het tijdschrift9
DOI's
StatusPublished - sep.-2008

Vingerafdruk

Duik in de onderzoeksthema's van 'The Roco protein family: a functional perspective'. Samen vormen ze een unieke vingerafdruk.

Citeer dit