TY - GEN
T1 - Tomographic image reconstruction based on artificial neural network (ANN) techniques
AU - Argyrou, Maria
AU - Maintas, Dimitris
AU - Tsoumpas, Charalampos
AU - Stiliaris, Efstathios
PY - 2012
Y1 - 2012
N2 - A new approach for tomographic image reconstruction from projections using Artificial Neural Network (ANN) techniques is presented in this work. The design of the proposed reconstruction system is based on simple but efficient network architecture, which best utilizes all available input information. Due to the computational complexity, which grows quadratically with the image size, the training phase of the system is characterized by relatively large CPU times. The trained network, on the contrary, is able to provide all necessary information in a quick and efficient way giving results comparable to other time consuming iterative reconstruction algorithms. The performance of the network studied with a large number of software phantoms is directly compared to other iterative and analytical techniques. For a given image size and projections number, the role of the hidden layers in the network architecture is examined and the quality dependence of the reconstructed image on the size of the geometrical patterns used in the training phase is also investigated. ANN based tomographic image reconstruction can be easily implemented in modern FPGA devices and can serve as a quick initialization method to other complicated and time consuming procedures.
AB - A new approach for tomographic image reconstruction from projections using Artificial Neural Network (ANN) techniques is presented in this work. The design of the proposed reconstruction system is based on simple but efficient network architecture, which best utilizes all available input information. Due to the computational complexity, which grows quadratically with the image size, the training phase of the system is characterized by relatively large CPU times. The trained network, on the contrary, is able to provide all necessary information in a quick and efficient way giving results comparable to other time consuming iterative reconstruction algorithms. The performance of the network studied with a large number of software phantoms is directly compared to other iterative and analytical techniques. For a given image size and projections number, the role of the hidden layers in the network architecture is examined and the quality dependence of the reconstructed image on the size of the geometrical patterns used in the training phase is also investigated. ANN based tomographic image reconstruction can be easily implemented in modern FPGA devices and can serve as a quick initialization method to other complicated and time consuming procedures.
U2 - 10.1109/NSSMIC.2012.6551757
DO - 10.1109/NSSMIC.2012.6551757
M3 - Conference contribution
AN - SCOPUS:84881569712
SN - 9781467320306
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 3324
EP - 3327
BT - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
T2 - 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Y2 - 29 October 2012 through 3 November 2012
ER -