Towards Accurate and Efficient Sleep Period Detection using Wearable Devices

Fatemeh Jokar Jandaghi, George Azzopardi, Joao Palotti

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
91 Downloads (Pure)

Samenvatting

Sleep monitoring has traditionally required expensive equipment and expert assessment. Wearable devices are however becoming a viable option for monitoring sleep. This study investigates methods for autonomously identifying sleep segments base on wearable device data. We employ and evaluate machine and deep learning models on the benchmark MESA dataset, with results showing that they outperform traditional methods in terms of accuracy, F1 score, and Matthews Correlation Coefficient (MCC). The most accurate model, namely Light Gradient Boosting Machine, obtained an F1 score of 0.93 and an MCC of 0.73. Additionally, sleep quality metrics were used to assess the models. Furthermore, it should be noted that the proposed approach is device-agnostic, and more accessible and cost-effective than the traditional polysomnography (PSG) methods.
Originele taal-2English
TitelComputer Analysis of Images and Patterns
Subtitel20th International Conference, CAIP 2023 Limassol, Cyprus, September 25–28, 2023 Proceedings, Part II
RedacteurenNicolas Tsapatsoulis
UitgeverijSpringer
Pagina's43–54
Aantal pagina's12
ISBN van elektronische versie978-3-031-44240-7
ISBN van geprinte versie978-3-031-44239-1
DOI's
StatusPublished - 20-sep.-2023
Evenement20th International Conference on Computer Analysis of Images and Patterns : CAIP2023 - Limassol, Cyprus
Duur: 25-sep.-202328-sep.-2023
https://cyprusconferences.org/caip2023/

Publicatie series

NaamLecture Notes in Computer Science
Volume14185
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Conference

Conference20th International Conference on Computer Analysis of Images and Patterns : CAIP2023
Land/RegioCyprus
StadLimassol
Periode25/09/202328/09/2023
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards Accurate and Efficient Sleep Period Detection using Wearable Devices'. Samen vormen ze een unieke vingerafdruk.

Citeer dit