Towards prevention of ischemia-reperfusion kidney injury: Pre-clinical evaluation of 6-chromanol derivatives and the lead compound SUL-138

P C Vogelaar, D Nakladal, D H Swart, L Tkáčiková, S Tkáčiková, A C van der Graaf, R H Henning, G Krenning*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

31 Downloads (Pure)

Samenvatting

Acute kidney injury (AKI) is a global healthcare burden attributable to high mortality and staggering costs of dialysis. The underlying causes of AKI include hypothermia and rewarming (H/R), ischemia/reperfusion (I/R), mitochondrial dysfunction and reactive oxygen species production. Inspired by the mechanisms conferring organ protection in hibernating hamster, 6-chromanol derived compounds were developed to address the need of effective prevention and treatment of AKI. Here we report on the pre-clinical screening of 6-chromanol leads that confer protection during I/R to select compounds with favorable profiles for clinical testing in AKI. A library of 6-chromanols (n = 63) was screened in silico for pharmacochemical properties and druggability. Selected compounds (n = 15) were screened for the potency to protect HEK293 cells from H/R cell death and subjected to a panel of in vitro safety assays. Based on these parameters, SUL-138 was selected as the lead compound and was found to safeguard kidney function and decrease renal injury after I/R in rats. The compound was without cardiovascular or respiratory effects in vivo. SUL-138 pharmacokinetics of control animals (mouse, rat) and those undergoing I/R (rat) was identical, showing a two-phase elimination profile with terminal half-life of about 8 h. Collectively, our phenotype-based screening approach led to the identification of 3 candidates for pre-clinical studies (5%, 3/64). SUL-138 emerged from this small-scale library of 6-chromanols as a novel prophylactic for AKI. The presented efficacy and safety data provide a basis for future development and clinical testing. Section assignments:: Drug discovery and translational medicine, renal, metabolism Significance statement:: Based on in silico druggability parameters, a 63 compound 6-chromanol library was narrowed down to 15 compounds. These compounds were subjected to phenotypical screening of cell survival following hypothermia damage and hit compounds were identified. After subsequent assessment of in vivo efficacy, toxicity, pharmacokinetics, and cardiovascular and respiratory safety, SUL-138 emerged as a lead compound that prevented kidney injury after ischemia/reperfusion and demonstrated a favorable pharmacokinetic profile unaffected by renal ischemia.

Originele taal-2English
Artikelnummer106033
Aantal pagina's15
TijdschriftEuropean Journal of Pharmaceutical Sciences
Volume168
DOI's
StatusPublished - 1-jan-2022

Citeer dit