TY - JOUR
T1 - Ultrashort Oncologic Whole-Body [18F]FDG Patlak Imaging Using LAFOV PET.
AU - van Sluis, Joyce
AU - van Snick, Johannes H
AU - Glaudemans, Andor W J M
AU - Slart, Riemer H J A
AU - Noordzij, Walter
AU - Brouwers, Adrienne H
AU - Dierckx, Rudi A J O
AU - Lammertsma, Adriaan A
AU - Tsoumpas, Charalampos
AU - Boellaard, Ronald
N1 - © 2024 by the Society of Nuclear Medicine and Molecular Imaging.
PY - 2024/10
Y1 - 2024/10
N2 - Methods to shorten [
18F]FDG Patlak PET imaging procedures ranging from 65-90 to 20-30 min after injection, using a population-averaged input function (PIF) scaled to patient-specific image-derived input function (IDIF) values, were recently evaluated. The aim of the present study was to explore the feasibility of ultrashort 10-min [
18F]FDG Patlak imaging at 55-65 min after injection using a PIF combined with direct Patlak reconstructions to provide reliable quantitative accuracy of lung tumor uptake, compared with a full-duration 65-min acquisition using an IDIF.
Methods: Patients underwent a 65-min dynamic PET acquisition on a long-axial-field-of-view (LAFOV) Biograph Vision Quadra PET/CT scanner. Subsequently, direct Patlak reconstructions and image-based (with reconstructed dynamic images) Patlak analyses were performed using both the IDIF (time to relative kinetic equilibrium between blood and tissue concentration (t*) = 30 min) and a scaled PIF at 30-60 min after injection. Next, direct Patlak reconstructions were performed on the system console using only the last 10 min of the acquisition, that is, from 55 to 65 min after injection, and a scaled PIF using maximum crystal ring difference settings of both 85 and 322. Tumor lesion and healthy-tissue uptake was quantified and compared between the differently obtained parametric images to assess quantitative accuracy.
Results: Good agreement was obtained between direct- and image-based Patlak analyses using the IDIF (t* = 30 min) and scaled PIF at 30-60 min after injection, performed using the different approaches, with no more than 8.8% deviation in tumor influx rate value (
K
i
) (mean difference ranging from -0.0022 to 0.0018 mL/[min × g]). When direct Patlak reconstruction was performed on the system console, excellent agreement was found between the use of a scaled PIF at 30-60 min after injection versus 55-65 min after injection, with 2.4% deviation in tumor
K
i
(median difference, -0.0018 mL/[min × g]; range, -0.0047 to 0.0036 mL/[min × g]). For different maximum crystal ring difference settings using the scan time interval of 55-65 min after injection, only a 0.5% difference (median difference, 0.0000 mL/[min × g]; range, -0.0004 to 0.0013 mL/[min × g]) in tumor
K
i
was found.
Conclusion: Ultrashort whole-body [
18F]FDG Patlak imaging is feasible on an LAFOV Biograph Vision Quadra PET/CT system without loss of quantitative accuracy to assess lung tumor uptake compared with a full-duration 65-min acquisition. The ultrashort 10-min direct Patlak reconstruction with PIF allows for its implementation in clinical practice.
AB - Methods to shorten [
18F]FDG Patlak PET imaging procedures ranging from 65-90 to 20-30 min after injection, using a population-averaged input function (PIF) scaled to patient-specific image-derived input function (IDIF) values, were recently evaluated. The aim of the present study was to explore the feasibility of ultrashort 10-min [
18F]FDG Patlak imaging at 55-65 min after injection using a PIF combined with direct Patlak reconstructions to provide reliable quantitative accuracy of lung tumor uptake, compared with a full-duration 65-min acquisition using an IDIF.
Methods: Patients underwent a 65-min dynamic PET acquisition on a long-axial-field-of-view (LAFOV) Biograph Vision Quadra PET/CT scanner. Subsequently, direct Patlak reconstructions and image-based (with reconstructed dynamic images) Patlak analyses were performed using both the IDIF (time to relative kinetic equilibrium between blood and tissue concentration (t*) = 30 min) and a scaled PIF at 30-60 min after injection. Next, direct Patlak reconstructions were performed on the system console using only the last 10 min of the acquisition, that is, from 55 to 65 min after injection, and a scaled PIF using maximum crystal ring difference settings of both 85 and 322. Tumor lesion and healthy-tissue uptake was quantified and compared between the differently obtained parametric images to assess quantitative accuracy.
Results: Good agreement was obtained between direct- and image-based Patlak analyses using the IDIF (t* = 30 min) and scaled PIF at 30-60 min after injection, performed using the different approaches, with no more than 8.8% deviation in tumor influx rate value (
K
i
) (mean difference ranging from -0.0022 to 0.0018 mL/[min × g]). When direct Patlak reconstruction was performed on the system console, excellent agreement was found between the use of a scaled PIF at 30-60 min after injection versus 55-65 min after injection, with 2.4% deviation in tumor
K
i
(median difference, -0.0018 mL/[min × g]; range, -0.0047 to 0.0036 mL/[min × g]). For different maximum crystal ring difference settings using the scan time interval of 55-65 min after injection, only a 0.5% difference (median difference, 0.0000 mL/[min × g]; range, -0.0004 to 0.0013 mL/[min × g]) in tumor
K
i
was found.
Conclusion: Ultrashort whole-body [
18F]FDG Patlak imaging is feasible on an LAFOV Biograph Vision Quadra PET/CT system without loss of quantitative accuracy to assess lung tumor uptake compared with a full-duration 65-min acquisition. The ultrashort 10-min direct Patlak reconstruction with PIF allows for its implementation in clinical practice.
KW - Humans
KW - Fluorodeoxyglucose F18
KW - Female
KW - Male
KW - Middle Aged
KW - Whole Body Imaging/methods
KW - Aged
KW - Lung Neoplasms/diagnostic imaging
KW - Image Processing, Computer-Assisted/methods
KW - Positron-Emission Tomography/methods
KW - Time Factors
KW - Positron Emission Tomography Computed Tomography/methods
KW - Radiopharmaceuticals/pharmacokinetics
U2 - 10.2967/jnumed.124.267784
DO - 10.2967/jnumed.124.267784
M3 - Article
C2 - 39353647
SN - 0161-5505
VL - 65
SP - 1652
EP - 1657
JO - Journal of nuclear medicine : official publication, Society of Nuclear Medicine
JF - Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IS - 10
ER -