Unbiased estimation of the OLS covariance matrix when the errors are clustered

Tom Boot, Gianmaria Niccodemi, Tom Wansbeek*

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

11 Downloads (Pure)

Samenvatting

When data are clustered, common practice has become to do OLS and use an estimator of the covariance matrix of the OLS estimator that comes close to unbiasedness. In this paper, we derive an estimator that is unbiased when the random-effects model holds. We do the same for two more general structures. We study the usefulness of these estimators against others by simulation, the size of the t-test being the criterion. Our findings suggest that the choice of estimator hardly matters when the regressor has the same distribution over the clusters. But when the regressor is a cluster-specific treatment variable, the choice does matter and the unbiased estimator we propose for the random-effects model shows excellent performance, even when the clusters are highly unbalanced.

Originele taal-2English
TitelAdvanced Studies in Theoretical and Applied Econometrics
RedacteurenSubal C. Kumbhakar, Robin C. Sickles, Hung-Jen Wang
UitgeverijSpringer Science and Business Media Deutschland GmbH
Pagina's47-69
Aantal pagina's23
ISBN van elektronische versie978-3-031-48385-1
ISBN van geprinte versie978-3-031-48384-4, 978-3-031-48387-5
DOI's
StatusPublished - 2024

Publicatie series

NaamAdvanced Studies in Theoretical and Applied Econometrics
Volume55
ISSN van geprinte versie1570-5811
ISSN van elektronische versie2214-7977

Vingerafdruk

Duik in de onderzoeksthema's van 'Unbiased estimation of the OLS covariance matrix when the errors are clustered'. Samen vormen ze een unieke vingerafdruk.

Citeer dit