Samenvatting
When a diet switch results in a change in dietary isotopic values, isotope ratios of the consumer's tissues will change until a new equilibrium is reached. This change is generally best described by an exponential decay curve. Indeed, after a diet switch in captive red knot shorebirds (Calidris canutus islandica), the depletion of C-13 in both blood cells and plasma followed an exponential decay curve. Surprisingly, the diet switch with a dietary N-15/N-14 ratio (N-15) change from 11.4 to 8.8 parts per thousand had little effect on N-15 in the same tissues. The diet-plasma and diet-cellular discrimination factors of N-15 with the initial diet were very low (0.5 and 0.2 parts per thousand, respectively). N-15 in blood cells and plasma decreased linearly with increasing body mass, explaining about 40 % of the variation in N-15. N-15 in plasma also decreased with increasing body-mass change (r(2)=.07). This suggests that the unusual variation in N-15 with time after the diet switch was due to interferences with simultaneous changes in body-protein turnover.
| Originele taal-2 | English |
|---|---|
| Pagina's (van-tot) | 283-292 |
| Aantal pagina's | 10 |
| Tijdschrift | Isotopes in Environmental and Health Studies |
| Volume | 49 |
| Nummer van het tijdschrift | 2 |
| DOI's | |
| Status | Published - 1-jun.-2013 |