Upper large deviations for power-weighted edge lengths in spatial random networks

Christian Hirsch, Daniel Willhalm*

*Corresponding author voor dit werk

Onderzoeksoutput: VoordrukAcademic

36 Downloads (Pure)

Samenvatting

We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e\in E} |e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha>d$, we provide a set of sufficient conditions under which the upper large deviations asymptotics are characterized by a condensation phenomena, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected and undirected variants of the $k$-nearest neighbor graph, as well as suitable $\beta$-skeletons.
Originele taal-2English
UitgeverarXiv
Aantal pagina's27
DOI's
StatusSubmitted - 4-mrt.-2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Upper large deviations for power-weighted edge lengths in spatial random networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit