TY - JOUR
T1 - Valorization of humin type byproducts from pyrolytic sugar conversions to biobased chemicals
AU - Abdilla-Santes, R. M.
AU - Agarwal, S.
AU - Xi, X.
AU - Heeres, H.
AU - Deuss, P. J.
AU - Heeres, H. J.
PY - 2020/11
Y1 - 2020/11
N2 - The pyrolytic sugar fraction, obtained by an aqueous extraction of pyrolysis oil, is an attractive source for sugar-derived platform chemicals. However, solids (humin) formation occurs to a significant extent during hydrolysis and subsequent acid-catalyzed conversion processes. In this study, we report investigations on possible conversion routes (pyrolysis, liquefaction) of such humin byproducts to biobased chemicals. Experiments were carried out with a model humin made from a representative technical pyrolytic sugar and the product was characterized by elemental analysis, GPC, TGA, HPLC, GC-MS, FT-IR and NMR. The obtained humin sample is soluble in organic solvents (dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and isopropanol (IPA)), in contrast to typical more condensed humins from glucose and fructose, allowing characterization using NMR and GPC. All analyses reveal that the humins are oligomeric in nature (M-w of about 900 g/mol) and consist of sugar and furanic fragments linked with among others (substituted) aliphatic, ester units and, in addition, phenolic fragments with methoxy groups. The humins were used as a feed for catalytic pyrolysis and catalytic liquefaction experiments. Catalytic pyrolysis experiments (mg scale, programmable temperature vaporizer (PTV)-GC-MS, 550 degrees C) with HZSM-5 50 as the catalyst gave benzene-toluene-xylene-naphthalene-ethylbenzene mixtures (BTXNE) in 5.1 wt% yield based on humin intake. Liquefaction experiments (batch reactor, 350 degrees C, 4 h, isopropanol as both the solvent and hydrogen donor and Pt/CeO2 (4.43 wt% Pt) catalyst) resulted in 80 wt% conversion of the humin feed to a product oil with considerable amounts of phenolics and aromatics (ca. 24.7 % based on GC detectables in the humin oil). These findings imply that the techno-economic viability of pyrolysis oil biorefineries can be improved by converting humin type byproducts to high value, low molecular weight biobased chemicals.
AB - The pyrolytic sugar fraction, obtained by an aqueous extraction of pyrolysis oil, is an attractive source for sugar-derived platform chemicals. However, solids (humin) formation occurs to a significant extent during hydrolysis and subsequent acid-catalyzed conversion processes. In this study, we report investigations on possible conversion routes (pyrolysis, liquefaction) of such humin byproducts to biobased chemicals. Experiments were carried out with a model humin made from a representative technical pyrolytic sugar and the product was characterized by elemental analysis, GPC, TGA, HPLC, GC-MS, FT-IR and NMR. The obtained humin sample is soluble in organic solvents (dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and isopropanol (IPA)), in contrast to typical more condensed humins from glucose and fructose, allowing characterization using NMR and GPC. All analyses reveal that the humins are oligomeric in nature (M-w of about 900 g/mol) and consist of sugar and furanic fragments linked with among others (substituted) aliphatic, ester units and, in addition, phenolic fragments with methoxy groups. The humins were used as a feed for catalytic pyrolysis and catalytic liquefaction experiments. Catalytic pyrolysis experiments (mg scale, programmable temperature vaporizer (PTV)-GC-MS, 550 degrees C) with HZSM-5 50 as the catalyst gave benzene-toluene-xylene-naphthalene-ethylbenzene mixtures (BTXNE) in 5.1 wt% yield based on humin intake. Liquefaction experiments (batch reactor, 350 degrees C, 4 h, isopropanol as both the solvent and hydrogen donor and Pt/CeO2 (4.43 wt% Pt) catalyst) resulted in 80 wt% conversion of the humin feed to a product oil with considerable amounts of phenolics and aromatics (ca. 24.7 % based on GC detectables in the humin oil). These findings imply that the techno-economic viability of pyrolysis oil biorefineries can be improved by converting humin type byproducts to high value, low molecular weight biobased chemicals.
KW - Pyrolysis oil biorefinery
KW - Pyrolytic sugars
KW - Humins pyrolysis
KW - Liquefaction
KW - Biobased chemicals
KW - ACID-CATALYZED CONVERSION
KW - STRUCTURAL-CHARACTERIZATION
KW - BIOMASS
KW - HYDROLYSIS
KW - LEVOGLUCOSAN
KW - HYDROTREATMENT
KW - EXTRACTION
KW - FRACTION
KW - GLUCOSE
KW - MODEL
U2 - 10.1016/j.jaap.2020.104963
DO - 10.1016/j.jaap.2020.104963
M3 - Article
SN - 0165-2370
VL - 152
JO - Journal of Analytical and Applied Pyrolysis
JF - Journal of Analytical and Applied Pyrolysis
M1 - 104963
ER -