Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

F. K. Dejene*, J. Flipse, B. J. van Wees

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

16 Citaten (Scopus)
196 Downloads (Pure)


We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs in the voltage-current relationships, dominated by nonlinear contributions of the temperature-dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher-order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating starts to dominate over Peltier heating. Our results signify the importance of local equilibrium (linearity) for the validity of this phenomenological reciprocity relation.

Originele taal-2English
Aantal pagina's5
TijdschriftPhysical Review. B: Condensed Matter and Materials Physics
Nummer van het tijdschrift18
StatusPublished - 17-nov-2014

Citeer dit